Leg Disorders in Chickens

Leg Disorders in Chickens

 

                       Broiler (meat) chickens have been subjected to intense genetic selection. In the past 50 years, broiler growth rates have increased by over 300% (from 25 g per day to 100 g per day). There is growing societal concern that many broiler chickens have impaired locomotion or are even unable to walk. Here we present the results of a comprehensive survey of commercial flocks which quantifies the risk factors for poor locomotion in broiler chickens. We assessed the walking ability of 51,000 birds, representing 4.8 million birds within 176 flocks. We also obtained information on approximately 150 different management factors associated with each flock. At a mean age of 40 days, over 27.6% of birds in our study showed poor locomotion and 3.3% were almost unable to walk. The high prevalence of poor locomotion occurred despite culling policies designed to remove severely lame birds from flocks. We show that the primary risk factors associated with impaired locomotion and poor leg health are those specifically associated with rate of growth. Factors significantly associated with high gait score included the age of the bird (older birds), visit (second visit to same flock), bird genotype, not feeding whole wheat, a shorter dark period during the day, higher stocking density at the time of assessment, no use of antibiotic, and the use of intact feed pellets. The welfare implications are profound. Worldwide approximately 2×1010 broilers are reared within similar husbandry systems. We identify a range of management factors that could be altered to reduce leg health problems, but implementation of these changes would be likely to reduce growth rate and production. A debate on the sustainability of current practice in the production of this important food source is required.

                  We studied broiler flocks belonging to five major UK producers who together accounted for over 50 per cent of UK production. Two other relatively large companies were invited to participate but declined. We obtained data from each producer in proportion to their respective annual broiler production. Visits were randomised to farm and flock and were made by veterinarians who had completed a five-day training course to evaluate broiler walking ability with a standardised gait scoring method. Eighteen veterinarians with postgraduate qualifications in poultry medicine and production, or in welfare science, acted as flock assessors and were trained to categorise gait scores within a range from 0 (completely normal) to 5 (unable to stand). The scoring system primarily assesses walking ability rather than exhaustion, with assessors trained to identify rolling gaits, limping, jerky and unsteady movements and problems with manoeuvrability. The scoring system is also known to correlate well with other methods of assessing leg disorders that do not involve active movement, such as the latency-to-lie test. Throughout the study the uniformity of the assessors’ scoring was monitored and by the end of the course, average scores for each category were all within half a score. During the subsequent 18 month study, assessors were sent at approximately six and 12 months, a tape containing new video sequences covering a range of gait scores. The scoring of these tapes was monitored to ensure that the assessors remained in agreement. Reference movies of birds’ walking ability for each of the six categories are given in the supplementary information. Each of 176 flocks was visited approximately three days before the flock was depopulated for slaughter and at least 250 birds from each flock were gait-scored from ten, pre-selected, randomised sites within a house.

            Fifty seven of the 176 flocks in our study were not ‘depopulated’ for slaughter simultaneously. Instead, one of more groups of birds were removed sequentially over a period of days or weeks in a process known as ‘thinning’. This process involved the removal of a portion of the flock, usually the female birds, to allow the remaining birds more room to grow on to a greater weight. To account for the effects of ‘thinning’ practices, an additional 30 visits were made as second visits approximately three days prior to a later depopulation of one of the original 176 flocks. The flocks visited a second time were also chosen at random from the initial set of flocks.

            A primary aim of the study was to investigate possible risk factors associated with the wide inter-flock variation in leg disorders. Of particular interest were risk factors associated with bird husbandry which could possibly be altered when rearing future flocks. Information on these aspects was obtained for each flock by a direct interview with a farm representative. The same questionnaire was used for each visit and comprised 134 questions initially about the breeding flock that had supplied the farm, the facilities where the eggs had been hatched, the distance and time the chicks had been transported, and hatchery vaccination policies. Information was then obtained about the number, weight, sex and time of chicks placed, and their date of arrival. The largest section of the questionnaire sought information on husbandry practices including stocking density and thinning practices, nutritional information, layout and construction of the house, and background information on health, growth rates, mortality and culling policies. Finally, information about the personnel working with the flock, the farm, biosecurity measures and company policies was obtained. After conducting the direct interview, each veterinary assessor collected direct information relating to air quality, temperature, general cleanliness and feed quality.

Referrence treatment: ADE Plus, ADE, Calcium B12, Vitec

Source: PMC – US National Library of Medicine National Institute of Health, VietDVM

 

 

Back to Top